feedback package¶
Submodules¶
feedback.feedback_judge module¶
- class feedback.feedback_judge.FeedbackJudge(api_key, api_base_url, model_name, org_id, prompt_templates, **model_kwargs)[source]¶
Bases:
MultiModalModel
- is_design_goal_achieved(feedback: str, design_goal: str) Tuple[bool, float] [source]¶
Determine if the design goal has been achieved and provide a score based on the Hits.
- Parameters:
feedback – The feedback to process.
design_goal – The design goal to compare against.
- Returns:
A tuple containing a boolean indicating if the goal is achieved and a score between 0 and 1.
feedback.visual_feedback module¶
- class feedback.visual_feedback.VisualFeedback(api_key, api_base_url, model_name, org_id, prompt_templates, **model_kwargs)[source]¶
Bases:
MultiModalModel
- generate_feedback_paragraph(design_goal: str, reference_images: List[str] | None, rendered_images: List[str]) str [source]¶
Generate a feedback paragraph comparing the rendered object with the design goal and reference images. Focus on geometry, shape, and physical feasibility.
- Parameters:
design_goal – Text description of the design specifications.
reference_images – List of byte data for reference images.
rendered_images – List of byte data for rendered object images.
- Returns:
A paragraph of feedback highlighting hits and misses.
feedback.visual_qa module¶
- class feedback.visual_qa.VisualQA(api_key, api_base_url, model_name, org_id, prompt_templates, **model_kwargs)[source]¶
Bases:
MultiModalModel
- automated_qa(design_goal: str, reference_images: List[str] | None, rendered_images: List[str], num_questions: int = 5) dict [source]¶
Generate questions and then generate answers to those questions.
- Parameters:
design_goal (str) – Text description of the design goal.
reference_images (List[str]) – List of reference images in str.
rendered_images (List[str]) – List of rendered images in str.
num_questions (int) – Number of questions to generate.
- Returns:
Dictionary containing the generated questions and answers.
- Return type:
dict
- generate_answers(design_goal: str, questions: List[str], reference_images: List[str] | None, rendered_images: List[str]) dict [source]¶
Generate answers to the provided questions based on the design goal and images.
- Parameters:
design_goal (str) – Text description of the design goal.
questions (List[str]) – List of questions to answer.
reference_images (List[str]) – List of reference images in str.
rendered_images (List[str]) – List of rendered images in str.
- Returns:
Dictionary of questions and their corresponding answers.
- Return type:
dict
- generate_questions(design_goal: str, reference_images: List[str] | None, num_questions: int = 5) List[str] [source]¶
Generate questions based on the design goal and images. :param design_goal: Text description of the design goal. :type design_goal: str :param reference_images: List of reference images paths. :type reference_images: List[str] :param num_questions: Number of questions to generate. :type num_questions: int
- Returns:
List of generated questions.
- Return type:
List[str]